Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Aquachloridodimethylphenyltin(IV)–15crown-5 (2/1)

Mahsa Armaghan,^a Mostafa M. Amini,^a Amirreza Azadmehr,^a Shan Gao^b and Seik Weng Ng^c*

^aDepartment of Chemistry, Shahid Beheshti University, Tehran, Iran, ^bSchool of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China, and ^cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Received 30 January 2008; accepted 20 April 2008

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.008 Å; disorder in main residue; R factor = 0.043; wR factor = 0.128; data-to-parameter ratio = 24.3.

The Sn^{IV} atom in the title compound, $2[Sn(CH_3)_2(C_6H_5)Cl-(H_2O)] \cdot C_{10}H_{20}O_5$, exists in a *trans*-C₃SnClO trigonal bipyramidal geometry in which the organo substituents occupy the equatorial sites. The coordinated water molecule forms two hydrogen bonds to the 15-crown-5 molecule, which is disordered about a center of inversion.

Related literature

For 'outer-sphere coordination' organotin complexes with 15crown-5, see: Amini *et al.* (1994); Chee *et al.* (2003); Yap *et al.* (1996). For the refinement of 15-crown-5 type crystal structures that are disordered about a center of inversion, see: Ng (2005). For the analogous adduct of $SnCl(CH_3)_2(C_6H_5)(H_2O)$ with 18-crown-6, see: Amini *et al.* (2002).

Experimental

Crystal data 2[Sn(CH₃)₂(C₆H₅)Cl(H₂O)]- $C_{10}H_{20}O_5$

 $M_r = 778.91$ Monoclinic, $P2_1/n$ Mo $K\alpha$ radiation

 $\mu = 1.67 \text{ mm}^{-1}$

T = 295 (2) K $0.30 \times 0.25 \times 0.20 \text{ mm}$

Z = 2

a = 9.8700 (3) Å	
b = 18.9814 (5) Å	
c = 9.8770 (3) Å	
$\beta = 113.636 \ (1)^{\circ}$	
V = 1695.2 (1) Å ³	

Data collection

Rigaku R-AXIS RAPID	16379 measured reflections
diffractometer	3869 independent reflections
Absorption correction: multi-scan	3433 reflections with $I > 2\sigma(I)$
(ABSCOR; Higashi, 1995)	$R_{\rm int} = 0.023$
$T_{\min} = 0.534, \ T_{\max} = 0.732$	

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.042 & 30 \text{ restraints} \\ wR(F^2) &= 0.128 & \text{H-atom parameters constrained} \\ S &= 1.06 & \Delta\rho_{\text{max}} = 1.29 \text{ e} \text{ Å}^{-3} \\ 3869 \text{ reflections} & \Delta\rho_{\text{min}} = -1.14 \text{ e} \text{ Å}^{-3} \end{split}$$

Table 1

Selected geometric parameters (Å, °).

Sn1-C1	2.115 (5)	Sn1-O1w	2.472 (3)
Sn1-C2	2.122 (5)	Sn1-Cl1	2.485 (1)
Sn1-C3	2.139 (4)		
C1-Sn1-C2	120.2 (2)	C2-Sn1-C3	116.0 (2)
C1-Sn1-C3	121.1 (2)	O1w-Sn1-Cl1	176.1 (1)

Data collection: *RAPID-AUTO* (Rigaku, 1998); cell refinement: *RAPID-AUTO*; data reduction: *CrystalStructure* (Rigaku/MSC, 2002); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *X-SEED* (Barbour, 2001); software used to prepare material for publication: *publCIF* (Westrip, 2008).

We thank Shahid Beheshti University, Heilongjiang University and the University of Malaya for supporting this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2247).

References

- Amini, M. M., Azadmehr, A., Abadi, S. H. & Ng, S. W. (2002). Acta Cryst. E58, m484–m485.
- Amini, M. M., Zuckerman, J. J., Rheingold, A. L. & Ng, S. W. (1994). Z. Kristallogr. 209, 613–614.
- Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.

Chee, C. F., Lo, K. M. & Ng, S. W. (2003). Acta Cryst. E59, m202-m204.

- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Ng, S. W. (2005). Chin. J. Struct. Chem. 24, 1425-1439.
- Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan. Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Westrip, S. P. (2008). *publCIF*. In preparation.
- Yap, G. P. A., Counterman, A. E., Amini, M. M., Ng, S. W. & Rheingold, A. L. (1996). *Main Group Chem.* **1**, 359–363.

supplementary materials

Acta Cryst. (2008). E64, m721 [doi:10.1107/S1600536808011070]

Aquachloridodimethylphenyltin(IV)-15-crown-5 (2/1)

M. Armaghan, M. M. Amini, A. Azadmehr, S. Gao and S. W. Ng

Comment

Water-coordinated triorganotin salts form "outer-sphere coordination" complexes with crown ethers. In these, the water molecules interact with the crown ether through hydrogen bonds (Amini *et al.*, 1994; Chee *et al.*, 2003; Yap *et al.*, 1996). The refinement of such crystal structures present special difficulties when the odd-numbered crown ether is disordered about a center of inversion. The refinement of such crystal structures has been described in detail (Ng, 2005). The mixed-organo Sn^{IV} title compound, (I), has the tin atom in a *trans*-C₃SnClO trigonal bipyramidal geometry, Fig. 1 & Table 1, in which the electronegative substituents occupy the axial sites. The coordinated water molecule forms two hydrogen bonds to the 15-crown-5, which is disordered about a center-of-inversion; Table 2.

Experimental

ChlorodimethylphenylSn^{IV} was synthesized by the cleavage of dimethyldiphenyltin with hydrogen chloride in a methanol/ carbon tetrachloride mixture at 283 K and was purified by distillation at 363 K/1 Torr. ChlorodimethylphenylSn^{IV} (0.26 g, 1 mmol) and 15-crown-5 (0.22 g, 1 mmol) were dissolved in ethanol (20 ml). The co-crystal (I), m.p. 347–349 K, separated when the solvent was allowed to evaporate. ¹H-NMR in CDCl₃: 0.90 (CH₃), 1.60 (H₂O), 3.72 (CH₂), 7.27–7.70 (C₆H₅) p.p.m. ¹¹⁹Sn NMR 115.7 p.p.m. ²J(¹¹⁹Sn–¹H) = 60 Hz.

Refinement

The 15-crown-5 lies about a center of inversion and the molecule was refined as a 15-atom species of half site-occupancy. All 1,2-related atoms were restrained to 1.45 ± 0.01 Å and 1,3-related atoms to 2.35 ± 0.01 Å. The displacement factors of the O atoms were restrained to be equal, as were those of the C atoms.

The carbon-bound H atoms were placed in calculated positions with C–H 0.93 to 0.97 Å, and with $U_{iso}(H)$ 1.2–1.5 $U_{eq}(C)$, and were included in the refinement in the riding-model approximation. The water H-atoms were placed in chemically sensible positions on the basis of hydrogen bonds but were not refined [O–H 0.82 Å and $U_{iso}(H)$ 1.5 $U_{eq}(O)$].

The final difference Fourier map had a relatively large peak/deep hole in the vicinity of the crown ether.

Figures

Fig. 1. Molecular structure of (I); ellipsoids are drawn at the 30% probability level, and H atoms as spheres of arbitrary radius. The 15-crown-5 is disordered about a center of inversion, only one orientation is shown for reasons of clarity. Dashed lines denote the water…crownether hydrogen bonds. Unlabelled atoms are related by the symmetry operation -x + 2, -y + 1, -z + 2.

Aquachloridodimethylphenyltin(IV)-15-crown-5 (2/1)

Crystal data

2[Sn(CH₃)₂(C₆H₅)Cl(H₂O)]·C₁₀H₂₀O₅ $F_{000} = 784$ $M_r = 778.91$ $D_{\rm x} = 1.526 {\rm Mg m}^{-3}$ Mo Kα radiation Monoclinic, $P2_1/n$ $\lambda = 0.71073 \text{ Å}$ Hall symbol: -P 2yn Cell parameters from 13887 reflections $\theta = 3.1 - 27.4^{\circ}$ a = 9.8700 (3) Åb = 18.9814 (5) Å $\mu = 1.67 \text{ mm}^{-1}$ c = 9.8770(3) Å T = 295 (2) K $\beta = 113.636 (1)^{\circ}$ Block, colorless $V = 1695.2 (1) \text{ Å}^3$ $0.30 \times 0.25 \times 0.20 \text{ mm}$ Z = 2

Data collection

Rigaku R-AXIS RAPID diffractometer	3869 independent reflections
Radiation source: fine-focus sealed tube	3433 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.023$
Detector resolution: 10.0 pixels mm ⁻¹	$\theta_{\text{max}} = 27.4^{\circ}$
T = 295(2) K	$\theta_{\min} = 3.1^{\circ}$
ω scans	$h = -10 \rightarrow 12$
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)	$k = -24 \rightarrow 24$
$T_{\min} = 0.534, T_{\max} = 0.732$	$l = -12 \rightarrow 12$
16379 measured reflections	

Refinement

Refinement on F^2
Least-squares matrix: full
$R[F^2 > 2\sigma(F^2)] = 0.042$
$wR(F^2) = 0.128$
<i>S</i> = 1.06
3869 reflections
159 parameters
30 restraints
Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0816P)^2 + 1.7228P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 1.29 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -1.14 \text{ e } \text{Å}^{-3}$ Extinction correction: none

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
Sn1	0.55993 (3)	0.385283 (13)	0.73184 (3)	0.04272 (13)	
Cl1	0.31360 (13)	0.32890 (8)	0.60646 (14)	0.0700 (3)	
O1w	0.7986 (3)	0.44517 (17)	0.8682 (4)	0.0634 (8)	
H1w	0.7920	0.4866	0.8431	0.095*	
H2w	0.8636	0.4260	0.8495	0.095*	
C1	0.6070 (6)	0.3380 (3)	0.9397 (6)	0.0719 (14)	
H1A	0.6438	0.3730	1.0159	0.108*	
H1B	0.6802	0.3019	0.9571	0.108*	
H1C	0.5184	0.3175	0.9406	0.108*	
C2	0.4774 (6)	0.4899 (3)	0.6902 (7)	0.0696 (13)	
H2A	0.5512	0.5202	0.6813	0.104*	
H2B	0.4537	0.5056	0.7704	0.104*	
H2C	0.3901	0.4910	0.6000	0.104*	
C3	0.6535 (4)	0.34520 (18)	0.5860 (4)	0.0448 (8)	
C4	0.5616 (6)	0.3317 (2)	0.4393 (5)	0.0584 (10)	
H4	0.4599	0.3374	0.4072	0.070*	
C5	0.6219 (7)	0.3095 (3)	0.3396 (6)	0.0741 (14)	
Н5	0.5592	0.2999	0.2422	0.089*	
C6	0.7687 (7)	0.3019 (3)	0.3827 (6)	0.0749 (14)	
Н6	0.8073	0.2881	0.3150	0.090*	
C7	0.8608 (6)	0.3144 (3)	0.5261 (7)	0.0719 (13)	
H7	0.9623	0.3087	0.5563	0.086*	
C8	0.8038 (5)	0.3356 (3)	0.6281 (5)	0.0602 (11)	
H8	0.8678	0.3435	0.7259	0.072*	
01	0.8394 (11)	0.5945 (5)	0.8704 (10)	0.0982 (12)	0.50
O2	1.0758 (10)	0.5345 (4)	0.8227 (10)	0.0982 (12)	0.50
O3	1.0975 (10)	0.4055 (5)	0.9549 (9)	0.0982 (12)	0.50
O4	1.1086 (10)	0.4378 (5)	1.2332 (10)	0.0982 (12)	0.50
O5	0.9190 (10)	0.5479 (5)	1.1592 (10)	0.0982 (12)	0.50
C9	0.9218 (17)	0.6312 (6)	0.8003 (17)	0.0922 (11)	0.50
H9A	0.8597	0.6661	0.7317	0.111*	0.50
H9B	1.0062	0.6550	0.8739	0.111*	0.50
C10	0.9708 (14)	0.5796 (6)	0.7224 (12)	0.0922 (11)	0.50
H10A	0.8869	0.5523	0.6574	0.111*	0.50
H10B	1.0140	0.6034	0.6622	0.111*	0.50
C11	1.1043 (16)	0.4717 (5)	0.7580 (12)	0.0922 (11)	0.50
H11A	1.1598	0.4829	0.6990	0.111*	0.50
H11B	1.0118	0.4498	0.6943	0.111*	0.50
C12	1.1889 (15)	0.4240 (7)	0.8775 (15)	0.0922 (11)	0.50
H12A	1.2159	0.3821	0.8379	0.111*	0.50
H12B	1.2788	0.4469	0.9443	0.111*	0.50
C13	1.1716 (15)	0.3633 (6)	1.0805 (11)	0.0922 (11)	0.50
H13A	1.2727	0.3797	1.1304	0.111*	0.50
H13B	1.1744	0.3150	1.0497	0.111*	0.50
C14	1.1003 (19)	0.3657 (6)	1.1805 (15)	0.0922 (11)	0.50

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

supplementary materials

H14A	1.1492	0.3340	1.2629	0.111*	0.50
H14B	0.9978	0.3512	1.1308	0.111*	0.50
C15	1.0198 (14)	0.4487 (6)	1.3105 (12)	0.0922 (11)	0.50
H15A	0.9783	0.4036	1.3200	0.111*	0.50
H15B	1.0831	0.4641	1.4094	0.111*	0.50
C16	0.9041 (13)	0.4965 (6)	1.2534 (15)	0.0922 (11)	0.50
H16A	0.8925	0.5199	1.3353	0.111*	0.50
H16B	0.8138	0.4704	1.1999	0.111*	0.50
C17	0.7917 (15)	0.5900 (8)	1.0850 (13)	0.0922 (11)	0.50
H17A	0.7720	0.6189	1.1561	0.111*	0.50
H17B	0.7066	0.5599	1.0357	0.111*	0.50
C18	0.8149 (16)	0.6343 (6)	0.9783 (12)	0.0922 (11)	0.50
H18A	0.7289	0.6641	0.9308	0.111*	0.50
H18B	0.8995	0.6645	1.0283	0.111*	0.50

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Sn1	0.04543 (19)	0.04251 (18)	0.03998 (18)	-0.00211 (9)	0.01686 (13)	0.00193 (8)
Cl1	0.0538 (6)	0.0880 (8)	0.0622 (7)	-0.0244 (6)	0.0171 (5)	-0.0039 (6)
O1w	0.0542 (16)	0.0637 (18)	0.068 (2)	-0.0146 (14)	0.0198 (14)	-0.0190 (15)
C1	0.072 (3)	0.082 (3)	0.052 (3)	-0.010 (3)	0.015 (2)	0.019 (2)
C2	0.067 (3)	0.053 (2)	0.087 (4)	0.007 (2)	0.029 (3)	0.007 (2)
C3	0.0526 (19)	0.0369 (16)	0.0439 (19)	-0.0036 (15)	0.0183 (16)	0.0006 (14)
C4	0.066 (3)	0.062 (2)	0.041 (2)	0.004 (2)	0.0158 (18)	-0.0013 (17)
C5	0.097 (4)	0.076 (3)	0.049 (3)	0.005 (3)	0.028 (3)	-0.006 (2)
C6	0.110 (4)	0.061 (3)	0.074 (3)	0.003 (3)	0.058 (3)	-0.008 (2)
C7	0.071 (3)	0.071 (3)	0.086 (4)	0.006 (2)	0.044 (3)	-0.006 (3)
C8	0.058 (2)	0.069 (3)	0.055 (2)	-0.006 (2)	0.024 (2)	-0.013 (2)
01	0.094 (3)	0.106 (3)	0.088 (3)	0.004 (3)	0.031 (2)	0.003 (2)
02	0.094 (3)	0.106 (3)	0.088 (3)	0.004 (3)	0.031 (2)	0.003 (2)
03	0.094 (3)	0.106 (3)	0.088 (3)	0.004 (3)	0.031 (2)	0.003 (2)
04	0.094 (3)	0.106 (3)	0.088 (3)	0.004 (3)	0.031 (2)	0.003 (2)
05	0.094 (3)	0.106 (3)	0.088 (3)	0.004 (3)	0.031 (2)	0.003 (2)
C9	0.092 (2)	0.104 (3)	0.090 (3)	0.007 (2)	0.046 (2)	-0.005 (2)
C10	0.092 (2)	0.104 (3)	0.090 (3)	0.007 (2)	0.046 (2)	-0.005 (2)
C11	0.092 (2)	0.104 (3)	0.090 (3)	0.007 (2)	0.046 (2)	-0.005 (2)
C12	0.092 (2)	0.104 (3)	0.090 (3)	0.007 (2)	0.046 (2)	-0.005 (2)
C13	0.092 (2)	0.104 (3)	0.090 (3)	0.007 (2)	0.046 (2)	-0.005 (2)
C14	0.092 (2)	0.104 (3)	0.090 (3)	0.007 (2)	0.046 (2)	-0.005 (2)
C15	0.092 (2)	0.104 (3)	0.090 (3)	0.007 (2)	0.046 (2)	-0.005 (2)
C16	0.092 (2)	0.104 (3)	0.090 (3)	0.007 (2)	0.046 (2)	-0.005 (2)
C17	0.092 (2)	0.104 (3)	0.090 (3)	0.007 (2)	0.046 (2)	-0.005 (2)
C18	0.092 (2)	0.104 (3)	0.090 (3)	0.007 (2)	0.046 (2)	-0.005 (2)
Geometric	parameters (Å, °)					
0.1 01		2.115(5)	04	71.6	1.20	0 (0)

Sn1—C12.115 (5)O4—C151.389 (8)Sn1—C22.122 (5)O4—C141.454 (9)

Sn1—C3	2.139 (4)	O5—C16	1.397 (8)
Sn1—O1w	2.472 (3)	O5—C17	1.420 (9)
Sn1—Cl1	2.485 (1)	C9—C10	1.442 (9)
O1w—H1w	0.8200	С9—Н9А	0.9700
O1w—H2w	0.8200	С9—Н9В	0.9700
C1—H1A	0.9600	C10—H10A	0.9700
C1—H1B	0.9600	C10—H10B	0.9700
C1—H1C	0.9600	C11—C12	1.455 (9)
C2—H2A	0.9600	C11—H11A	0.9700
C2—H2B	0.9600	C11—H11B	0.9700
С2—Н2С	0.9600	C12—H12A	0.9700
C3—C8	1.383 (6)	C12—H12B	0.9700
C3—C4	1.390 (6)	C13—C14	1.425 (8)
C4—C5	1.404 (7)	C13—H13A	0.9700
C4—H4	0.9300	C13—H13B	0.9700
C5—C6	1.345 (8)	C14—H14A	0.9700
С5—Н5	0.9300	C14—H14B	0.9700
C6—C7	1.362 (8)	C15—C16	1.388 (8)
С6—Н6	0.9300	C15—H15A	0.9700
С7—С8	1.396 (7)	C15—H15B	0.9700
С7—Н7	0.9300	C16—H16A	0.9700
С8—Н8	0.9300	C16—H16B	0.9700
O1—C18	1.404 (9)	C17—C18	1.437 (8)
O1—C9	1.442 (9)	C17—H17A	0.9700
O2—C10	1.402 (8)	С17—Н17В	0.9700
O2—C11	1.433 (9)	C18—H18A	0.9700
O3—C13	1.410 (9)	C18—H18B	0.9700
O3—C12	1.441 (9)		
C1 Sn1 C2	1202(2)	02 C10 C9	110 4 (8)
$C_1 = S_{n1} = C_2$	120.2(2) 121.1(2)	02 - 02 - 00 - 03	110.4 (8)
$C_1 = S_{11} = C_2$	121.1(2) 1160(2)	C_{2} C_{10} H_{10A}	109.0
$C_2 = S_{11} = C_3$	110.0 (2) 82.0 (2)	C_{2} C_{10} H_{10} R_{10}	109.0
$C_1 = S_1 = O_1 W$	82.9(2)	C0 C10 H10P	109.0
$C_2 = S_{11} = O_1 w$	83.3 (2) 87.5 (1)		109.0
C_3 — Sn_1 — O_1w	87.5 (1) 05.2 (2)	HI0A—C10—HI0B	108.1
C1 = Sn1 = Cl1	95.2 (2)	02 - C11 - C12	107.9 (8)
C_2 —Sh1—Cl1	94.8(2)	C12 C11 H11A	110.1
	96.4 (1)		110.1
Olw—Shl—Cll	1/6.1 (1)	02-CII-HIIB	110.1
SnI—Olw—Hlw	109.5		110.1
Sn1—O1w—H2w	109.5		108.4
HIW—OIW—H2W	109.5	03-012-011	107.7 (8)
SnI—CI—HIA	109.5	03	110.2
SnI—CI—HIB	109.5	CII—CI2—HI2A	110.2
HIA—CI—HIB	109.5	03—C12—H12B	110.2
Sn1—C1—H1C	109.5	C11—C12—H12B	110.2
HIA-CI-HIC	109.5	H12A—U12—H12B	108.5
HIB-CI-HIC	109.5	03-013-014	111.5 (8)
Sn1—C2—H2A	109.5	03—013—H13A	109.3
Sn1—C2—H2B	109.5	C14—C13—H13A	109.3

supplementary materials

H2A—C2—H2B	109.5	O3—C13—H13B	109.3
Sn1—C2—H2C	109.5	C14—C13—H13B	109.3
H2A—C2—H2C	109.5	H13A—C13—H13B	108.0
H2B—C2—H2C	109.5	C13—C14—O4	107.7 (8)
C8—C3—C4	117.5 (4)	C13—C14—H14A	110.2
C8—C3—Sn1	123.0 (3)	O4—C14—H14A	110.2
C4—C3—Sn1	119.3 (3)	C13—C14—H14B	110.2
C3—C4—C5	120.2 (5)	O4—C14—H14B	110.2
C3—C4—H4	119.9	H14A—C14—H14B	108.5
С5—С4—Н4	119.9	C16—C15—O4	118.2 (8)
C6—C5—C4	121.1 (5)	С16—С15—Н15А	107.8
С6—С5—Н5	119.5	O4—C15—H15A	107.8
С4—С5—Н5	119.5	С16—С15—Н15В	107.8
C5—C6—C7	119.7 (5)	O4—C15—H15B	107.8
С5—С6—Н6	120.1	H15A—C15—H15B	107.1
С7—С6—Н6	120.1	C15—C16—O5	116.0 (8)
C6—C7—C8	120.4 (5)	С15—С16—Н16А	108.3
С6—С7—Н7	119.8	O5—C16—H16A	108.3
С8—С7—Н7	119.8	C15—C16—H16B	108.3
C3—C8—C7	121.0 (5)	O5—C16—H16B	108.3
С3—С8—Н8	119.5	H16A—C16—H16B	107.4
С7—С8—Н8	119.5	O5-C17-C18	109.8 (8)
C18—O1—C9	114.0 (8)	O5—C17—H17A	109.7
C10—O2—C11	114.5 (8)	C18—C17—H17A	109.7
C13—O3—C12	113.0 (7)	O5—C17—H17B	109.7
C15—O4—C14	112.3 (8)	С18—С17—Н17В	109.7
C16—O5—C17	115.4 (8)	H17A—C17—H17B	108.2
C10—C9—O1	107.7 (8)	O1—C18—C17	111.6 (8)
С10—С9—Н9А	110.2	O1-C18-H18A	109.3
О1—С9—Н9А	110.2	C17—C18—H18A	109.3
С10—С9—Н9В	110.2	O1—C18—H18B	109.3
O1—C9—H9B	110.2	C17-C18-H18B	109.3
H9A—C9—H9B	108.5	H18A—C18—H18B	108.0
C1—Sn1—C3—C8	-54.1 (4)	C18—O1—C9—C10	165.5 (11)
C2—Sn1—C3—C8	107.3 (4)	C11—O2—C10—C9	165.4 (11)
O1w—Sn1—C3—C8	26.0 (4)	O1—C9—C10—O2	-67.6 (15)
Cl1—Sn1—C3—C8	-154.1 (3)	C10—O2—C11—C12	-167.9 (11)
C1—Sn1—C3—C4	129.8 (3)	C13—O3—C12—C11	-175.6 (11)
C2—Sn1—C3—C4	-68.8 (4)	O2-C11-C12-O3	63.6 (15)
O1w—Sn1—C3—C4	-150.1 (3)	C12—O3—C13—C14	160.1 (12)
Cl1—Sn1—C3—C4	29.7 (3)	O3-C13-C14-O4	-63.5 (16)
C8—C3—C4—C5	-0.2 (7)	C15—O4—C14—C13	169.2 (11)
Sn1—C3—C4—C5	176.1 (4)	C14—O4—C15—C16	-117.0 (15)
C3—C4—C5—C6	-1.1 (8)	O4—C15—C16—O5	-24 (2)
C4—C5—C6—C7	1.4 (9)	C17—O5—C16—C15	171.3 (13)
C5—C6—C7—C8	-0.6 (9)	C16—O5—C17—C18	-172.7 (12)
C4—C3—C8—C7	1.1 (7)	C9—O1—C18—C17	-155.4 (12)
Sn1—C3—C8—C7	-175.1 (4)	O5—C17—C18—O1	61.1 (16)
C6—C7—C8—C3	-0.7 (8)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
O1w—H1w…O1	0.82	2.09	2.86 (1)	156
O1w—H1w···O4 ⁱ	0.82	2.05	2.74 (1)	143
O1w—H2w···O3	0.82	2.15	2.82 (1)	139
O1w—H2w···O5 ⁱ	0.82	2.24	2.91 (1)	139
Symmetry codes: (i) $-x+2, -y+1, -z+2$.				

Fig. 1